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ABSTRACT

An etBclent method is presented for the detection of a contlnuous-wave

(CW) signal with a frequency drift that is linear in time. Signals of this type

occur if the transmitter and receiver are accelerating relative to one another, e.g.

transmissions from the Voyager space craft. We assume that both the frequency

and the drift are unknown. We also assume that the signal is weak compared to

the Gaussian noise. The signal is partitioned into subsequences whose discrete

Fourier transforms provide a sequence of instantaneous spectra at equal time

intervals. These spectra are then accumulated" with a shift that is proportional to

time. When the shift is equal to the frequency drift, the signal to noise ratio

increases and detection occurs. In this paper we show how to compute these

accumulations for many shifts in an et_cient manner using a variant of the FFT.

Computing time is proportional to LlogL where L is the length of the time

series. Computational results are presented.
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ABSTRACT

An efficient method is presented for the detection of a contlnuous-wave

(CW) signal with a frequency drift that is linear in time. Signals of this type

occur in transmissions between any two locations that are accelerating relative to

one another, e.g. transmissions from the Voyager space craft. We assume that

both the frequency and the drift are unknown. We also assume that the signal is

weak compared to the Gaussian noise. The signal is partitioned into subse-

quences whose discrete Fourier transforms provide a sequence of instantaneous

spectra at equal time intervals. These spectra are then accumulated with a shift

that is proportional to time. When the shift is equal to the frequency drift, the

signal to noise ratio increases and detection occurs. In this paper we show how to

compute these accumulations for many shifts in an efficient manner using a vari-

ant of the FFT. Computing time is proportional to LlogL where L is the length
of the time series.
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1. Introduction

For I=O,...,L-1 we are given a time series Yt that is is generated from a weak

continuous wave (CW) signal whose frequency is drifting linearly with time, i.e.,

Yi --- Ae2_ri(w° ÷ _lt| )tl + crgr (1.1)

The frequency at time t o - 0 is co0 and the frequency drift is co1. Both are meas-

ured in cycles per unit time. The term crg I is Ganssian noise with mean zero and

standard deviation _.

Signals of the form (1.1) result from CW transmissions between any locations

that are accelerating with respect to one another, e.g. like those received from

the Voyager space craft. They are also of interest for applications where the

acceleration is considerably reduced but a high level of accuracy is required, such

as satellite based aircraft navigational systems and similar systems that are

currently under development for automobiles. Signals of this form are also

thought to be the most probable form of initial communication from extraterres-

trials [2].

THE PROBLEM:

Given the time series Yi with a low signal to noise ratio then determine

coo and co1.

Once a signal is detected, its verification and analysis is relatively simple using

tuned versions of the algorithm that will be presented in the later sections.

Therefore detection becomes the fundamental problem and the primary goal is to

maximize its likehood. With a fixed computing resource we could persue the fol-

lowing options:

1. Develop a new method of detection.

2. Speed the computation of an existing method and use higher resolution.

3. Improve the accuracy of the existing method.
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In this paper we will pursue options 2 and 3 in the context of an existing method

which is described in [2]. They use the fast Fourier transform (FFT) to compute,

but not to accumulate the spectra. Here we show that the FFT can be used in all

of phases which results in a significant reduction in computing time. In particu-

lar the FFT is used to compute certain spectral shifts with a high degree of accu-

racy at t.he same time that it is used to accumulate the shifts.

The approach in Cullers, et.al., [2] is to accumulate the spectra of subsequences

to increase the signal to noise ratio. If L has factors L = MN we can define M

subsequences Ym,n - Yi where l = n + raN, for m = 0,...,M-1 and

n = 0,...,N-1. Each subsequence has N elements. Without loss of generality we

can assume that the sequence Yt is tabulated at integer times t I = l = n + mN

and consequently (1.1) takes the form

U,_,, = Ae 2";(°_° + ,_,)._v 2_;(_0 + 2._No,, + .o_,).e + crg,n,n. (1.2)

At this point, the sum of these subsequences would not increase the signal to

noise ratio because Ym,n is not coherent as a function of m. Nevertheless, the fol-

lowing steps can be taken:

. Compute the discrete Fourier transform (DFT) of the subsequences, i.e.,

compute M row transforms of length N

2Tr

1 N/2-1 -- ikn_
N

Y_,k- E _,,,, e (1.3)
N

n--- - N/2

If the frequency drift is negligible on each subsequence, i.e. if

n°)l _'<'(_0 + 2mN_l, then Y_,k provides an approximation to the

"instantaneous w spectrum at time raN. If we set no_ 1 = 0 in (1.2) and

k = NCco o + 2mNcol)in (1.3) then

= Ae2_i(_Oo + mN'.,),nN
Ym,N(o_ o + 2mN_,) + noise (1.4)
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The contribution of the signal to Ym,k is maximum

k - N(_ 0 ÷ 2mN_l) because the terms in (1.3) are coherent.

at

m

2. Next compute the amplitude of the spectrum Xj, k = Y_',k and

Xm,N(o_ ° + 2m_1) = IA I + noise (1.5)

The purpose of this step is to provide an "instantaneous" spectra that is

coherent for the next step.

3. Finally the spectra Xi, k is summed with a "test" shift a ,i.e.

M-1

Skfa) = 2:  ,k+am"
rn =O

(I.0)

From (1.5) and (1.6) the signal to noise ratio is maximum for

k + am = N(¢o 0 + 2mNo_l) or for k = N¢o 0 and a = 2N2_1. Therefore the

problem becomes one of computing the k and a that correspond to the max-

imum of Sk(a ) since o_0 is then given by ¢oo = k/N and co1 is given by

co1 = ct/(2N2). To implement (1.6) it is necessary to interpolate the spectra to

non-integer values k + am of the subscript. An accurate method for this interpo-

lation is given in the next section.

The maximum of (1.6) is located by tabulating Sk(a ) at a set of points

a I = a + j$ for j=O,...,M. Accuracy can be improved by a second tabulation

in the neighborhood of the maximum of the first tabulation. This would establish

verification and improve the accuracy of the analysis. If we set Si, k = Sk(ay)

then in the sections that follow we will be concerned with the efficient tabulation

of a discrete version of (1.6) namely (2.1).

2. The Algorithm.
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Given a, 8 and the M× N matrix Xm,n, then we wish to compute another M× N

matrix

M-1

si,k = E x_,k+_(_+is). (2.1)

The jth row of _Si,k contains the sum of the rows of Xm, k where the ruth row is

shifted by m(a+jS). The smallest shift between any two adjacent rows is 8.

Fractional shifts are permitted and computed with a high degree of accuracy

using trigonometric interpolation and the FFT.

Let xm, n be the rowwise backward Fourier transform of Xm, k. Then

2_r

1 N/2- i -_,_
N

xm,,- X _,_ (2.2)
N

n = -- NI2

and

2"ff

1 N/2-I -i[k+ ra(a+/a)ln_
N

X,,,,k+,,,(,,+ia) =- Y_ z,e
N

n=-Nl2

(2.3)

From (2.1)

Sj,k

2"g 27r
- imna-- - i8 imP,,--

N Zm,n)e N

2_T

--{kn--
N

g (2.4)

or

Sj,k

21T

1 N/2-1 --ikn--
N

Y_ si,.e
N

n---N/2

(2.s)

where

8]) n

2'W

M-1 -iSjmn--
N

"_ Zm, n e

rn=O

(2.s)
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and

27

- imna_

(2.7)
Zmyr_ _ _. Xttt_?l.

Given ct, 8, and Xm,k, the algorithm consists of the following steps:

A. Compute zm, n from the inverse of (2.2) and z m, n from (2.7).

B. Next compute si, n using (2.6). With fixed n, each column can be

transformed independently using a method that will be presented below.

C. Compute Si, k from (2.5) using the forward FFT applied to each row.

D. If Sirnax,kmax = max Si, k then co0 = kmax/N and _1 = (ct + jmazS)/(2N 2)
f,k

The FFT can be used for steps A and C. However it cannot be used for step B

since the complex exponential contains 8 which is not necessarily an integer.

Nevertheless we will show that (2.6) can be computed in about the time required

by a fast M-point convolution. We will use a technique introduced by Bluestein

[1] that enabled him to develop an FFT for arbitrary M including large prime

numbers. The details of his algorithm are presented in [4] as well as its imple-

mentation on multiprocessors.

The same transform (2.6) is applied to each column of the array zm, n and hence

the exposition can be simplified by removing the subscript n. Therefore we wish

to compute

2"N_

M-1 -if_jm--
N

si = z,,,e
tn =O

where [3 = 8n. We begin with the following identity

(2.s)

•2 2-2ira = (j-m) 2- - m. (2.9)

Substituting into (2.7) we obtain
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or

where

N
M-1

E(e
m=O

M-I

si = b71X b,j-ma%
m=0

(2.10)

(2.11)

i_rn2 "rr

b m = e N (2.12)

_iSrn 2'n"
N

Crn = e Zrn (2.13)

Equation (2.11) is preferable to (2.8) for computing s i because (2.11) can be

evaluated efficiently using the FFT. However an indirect approach is required

because (2.11) is not a circular convolution, i.e., the subscript j-m is not inter-

preted modulo M. If j-m is negative then it is replaced by m- j rather than

]-m + M. Nevertheless, one can construct an equivalent circular convolution.

Select P>2M-2 as a highly factorizable integer, e.g., a power of two. Next,

extend bm and cm to sequences with P elements as follows:

bm=O

bm - tp_ m

e -0
m.

Ms m <'P-M (2.15a)

P-M<--m <P. (2.15b)

Ms m <'P (2.15c)

Define

P-1

= b -1 (2.16)';i j X bj_m%
m=0

where the subscripts are now interpreted modulo P. It can be determined by

inspection that aj = ay for j = 0,...,M-1. Since (2.16) is a P point circular

convolution, it can be evaluated using the familiar FFT procedure [4]. The algo-

rithm for fast evaluation of (2.11) can now be summarized.
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B.0 Compute b m from (2.12) and extend to length P using (2.15a) and (2.15b).

Perform a P point forward FFT and call the result B k.

B.1 Compute c m from (2.13) and extend to length P using (2.15c). Perform a P

point forward FFT and call the result Ck.

B.2 Compute D k = B k Ck. Perform a backward P-point FFT and call the result

D

B.3 Multiply the first M elements of d k by bj 1 to obtain aj - aj. The remain-

ing P- M elements of dk may be discarded.

Note that step B.0 is an initialization step that does not have to be repeated for

the analysis of any subsequent time series.

3. Computational Tests

The algorithm described above has been implemented for test purposes. The

resulting program is written entirely in Fortran without assembly code or

assembly-coded library routines. Some modest efl'ort was made to insure that the

code was suitable for reasonably high performance execution on vector comput-

ers, but in general it is an entirely straightforward implementation of the algo-

rithm presented in section 2.

Two details of this implementation are worth mentioning because they would be

worth inclusion in any serious production system. First of all, every FFT opera-

tion, including those that are a part of the fractional FFT computation, was per-

formed using C'simultaneous" FFT routines. In other words, the FFTs were per-

formed vector-wise instead of individually. Such an implementation is of course

highly suited for a vector computer, but it also is quite appropriate for imple-

mentation on a parallel computer system. Secondly, it is important to note that

a substantial amount of computation time can saved by employing real-to-

complex FFTs in step A above and by employing complex-to-real FFTs in step C

above. A by-product of this modification is that the FFTs required for the frac-

tional transforms in step B need only be performed on N/2 + 1 columns.
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The detection of the true signal base frequency and drift rate is enhanced in this

implementation by employing a weighted score. This is because even when a

pure signal with no noise is input to the processing algorithm, the peak in the

result array is "smeared" over a number of nearby elements. This pattern of

smearing from a pure signal can in fact be used to design an improved detection

filter. The authors found that the following weighted score formula proved both

inexpensive and effective:

YY,k = l'052Sy-2,k+l + 8y-l,k+ _ql'-l,k+lJr"1.216Sy,k+ S/.+l,k_l-[-8j+l, k (3.1)

+ 1.052Sj+2,k_ I

where Sj, k is the final result of step C above. The statistical significances of

these weighted scores are determined by explicitly computing the mean and stan-

dard deviation of all Tj, k.

Table 1 contains a detailed accounting of the computational cost of the complete

detection algorithm. "C-C", "R-C" and "C-R" denote the three types of FFTs:

complex-to-complex, real-to-complex, and complex-to-real. The column headed

"Ref." lists references to specific equations and algorithm steps. The column

headed "Operation Counts" contains the number of real floating point arithmetic

operations for each step, with adds, subtracts and multiplies each counting as one

operation. Square roots, which are required to compute amplitudes, are counted

as 15 floating point operations (this approximates the cost of a typical 64-bit

square root function).



- 10-

Table 1

Floating point operation counts

Computational Step Ref. Operation Count

Initial row-wise C-C FFTs

Amplitudes

Inverse row-wise R-C FFTs

Column-wise multiplications

Column-wise forward C-C FFTs

Pointwise multiplications

Column-wise inverse C-C FFTs

Column-wise multiplications

Forward row-wise C-R FFTs

Weighted scores and statistics

Total

(1.3)
(1.5)

A

B.1

B.1

B.2

B.2

B.3

C

(3.1)

5MNlog2N

18MN

(5MNlog2N)/2 + MN

3MN

5MNIog2M + 5MN

6MN

5MNIogzM + 5MN

3MN

(5MNlog2N)/2 + MN

13MN

MN( lOlog2MN + 55 )

This algorithm was exercised by performing a series of tests with pseudoran-

domly selected initial frequencies and drift rates. In these tests, M and N were

each set to 1,024. The initial value of the drift rate a was set to -1/2, and the

drift rate increment, _, was set to -1/M. Thus the sums Sk(oc ) in (1.6) were

computed for all drift rates a from -1/2 to 1/2. For each test, a linearly drifting

signal was added to complex Gaussian pseudorandom data of the form

gt-- (el+f_/V2, where e I and ft are real Gaussian data with zero mean and

unit variance. The ratio of the amplitudes of the signal and the noise was 56.6,

so that the power of the signal was lower than that of the noise by a ratio of

3,200. This extremely low signal to noise level is approximately the level that the

Cyclops SETI system hopes to detect [2].



- 11-

Table 2

Algorithm Test Results

Trial

No.

1

2

3

4

5

6

7

8

9

10

Ave.

Generated

Base Freq. Drift Rate

119.842

967.298

706.734

828.500

97.555

626.842

989.664

203.058

1022.170

921.632

-0.26187

0.49238

0.04648

0.05203

0.35731

-0.25255

-0.14073

-0.42424

-0.10787

0.43326

Detected

Base Freq. Drift Rate

119.00

968.00

706.00

829.00

98.00

627.00

989.00

203.00

1022.00

922.00

-0.2607

0.4922

0.0479

0.0518

0.3564

-0.2529

-0.1396

-0.4248

-0.1074

0.4336

Z-score

6.506

6.515

6.570

7.146

6.991

6.303

7.688

8.274

7.253

8.863

7.211

Time

2.3448

2.4654

2.4522

2.4778

2.5006

2.5685

2.5031

2.3588

2.4729

2.4977

2.4642

These tests were performed on the Cray-2 operated by the NAS Systems Division

at NASA Ames. The results of these tests are displayed in Table 2. The column

headed "Z-score" gives the Z-score of the detection, i.e. the number of standard

deviations above the mean. The column headed "Time" contains single proces-

sor CPU times in seconds. These results indicate that the detection algorithm is

effective in determining the unknown base frequency and drift rates. In every

trial, the element of the final array with the highest weighted score was within

one bin both in drift rate and frequency from the true value. These Z-scores are

well above the level of random scores since one would not expect a random Z-

score to exceed 5 in a 1,024x 1,024 array.

The average processing CPU time, 2.464 seconds, corresponds to a performance

rate of approximately 109 MFLOP$, based on the total number of floating point

operations given in Table 1. This performance rate could be increased by

employing assembly-coded simultaneous FFT routines and by employing all four

of the Cray-2 processors. In any event, these timings indicate that such
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computations are feasible given suitably fast computer hardware.

As was mentioned above, the central problem is making an accurate initial detec-

tion. The algorithm presented here accomplishes this basic objective. Once a

putative detection has been made, its confidence level can be increased in a

number of ways, such as by repeating our algorithm with higher resolution near

the putative detection, or by employing a matched filter keyed to the putative

frequency and drift rate. It is also expected that some modest enhancements and

improvements in the algorithm could also improve these detection levels.
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